Abstract

Crowd counting is a challenging task, mainly due to the severe occlusions among dense crowds. This paper aims to take a broader view to address crowd counting from the perspective of semantic modeling. In essence, crowd counting is a task of pedestrian semantic analysis involving three key factors: pedestrians, heads, and their context structure. The information of different body parts is an important cue to help us judge whether there exists a person at a certain position. Existing methods usually perform crowd counting from the perspective of directly modeling the visual properties of either the whole body or the heads only, without explicitly capturing the composite body-part semantic structure information that is crucial for crowd counting. In our approach, we first formulate the key factors of crowd counting as semantic scene models. Then, we convert the crowd counting problem into a multi-task learning problem, such that the semantic scene models are turned into different sub-tasks. Finally, the deep convolutional neural networks are used to learn the sub-tasks in a unified scheme. Our approach encodes the semantic nature of crowd counting and provides a novel solution in terms of pedestrian semantic analysis. In experiments, our approach outperforms the state-of-the-art methods on four benchmark crowd counting data sets. The semantic structure information is demonstrated to be an effective cue in scene of crowd counting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.