Abstract

The development of high-field-strength magnetic resonance (MR) imaging systems has been driven in part by expected improvements in signal-to-noise ratio, contrast-to-noise ratio, spatial-temporal resolution trade-off, and spectral resolution. However, the transition from 1.5- to 3.0-T MR imaging is not straightforward. Compared with body imaging at lower field strength, body imaging at 3.0 T results in altered relaxation times, augmented and new artifacts, changes in chemical shift effects, and a dramatic increase in power deposition, all of which must be accounted for when developing imaging protocols. Inhomogeneities in the static magnetic field and the radiofrequency field at 3.0 T necessitate alterations in the design of coils and other hardware and new approaches to pulse sequence design. Techniques to reduce total body heating are demanded by the physics governing the specific absorption rate. Furthermore, the siting and maintenance of 3.0-T MR imaging systems are complicated by additional safety hazards unique to high-field-strength magnets. These aspects of 3.0-T body imaging represent current challenges and opportunities for radiology practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.