Abstract

In nine mammalian species (mouse - cattle: 21.5 g-503 kg) lung total phospholipids (PL), alveolar surfactant phosphatidylcholine (PC) and sphingomyelin (SM) fatty acyl (FA) chain composition was tested relating to body mass (BM) and resting respiratory rate (RRR) associated adaptations. In PL, PC and SM oleic acid (C18:1 n9) provided negative correlations with RRR. Palmitic acid (C16:0) was strongly, positively correlated with RRR in the pulmonary PLs, and myristic (C14:0) acid correlated positively with RRR in the surfactant PCs. In pulmonary PLs negative allometry was found for myristic, palmitic, palmitoleic (C16:1 n7) and docosahexaenoic (C22:6 n3) acids and total saturation, while oleic (C18:1 n9), alpha-linolenic (C18:3 n3) and gondoic (C20:1 n9) acids, total n9 FA s and monounsaturation increased allometrically. In surfactant PC FA s palmitic acid provided negative, while oleic acid and monounsaturation positive allometry; the average FA chain length (ACL) was identical in all species. Surfactant SM FA composition was fully species independent for palmitic and arachidonic acids, total saturation, monounsaturation and ACL. The in vivo lipid peroxidation rate was species independent. The variability of lung PLs was consonant with the "membrane pacemakers theory", while surfactant PC composition was mostly related to RRR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call