Abstract

Vaccination is widely considered the most effective preventative strategy to protect against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. An individual’s exercise habits, and physical fitness have been shown to impact the immune response following vaccination using traditional vaccine platforms, but their effects are not well characterized following administration of newer vaccination technology (mRNA vaccines). We investigated these effects on the magnitude of antibody responses following SARS-CoV-2 mRNA vaccination while accounting for known covariates (age, sex, time since vaccination, and the type of vaccine administered). Adults of varying fitness levels (18–65 years; N = 50) who had received either the Moderna or Pfizer SARS-CoV-2 mRNA vaccine between 2 weeks and 6 months prior, completed health history and physical activity questionnaires, had their blood drawn, body composition, cardiorespiratory fitness, and strength assessed. Multiple linear regressions assessed the effect of percent body fat, hand grip strength, cardiorespiratory fitness, and physical activity levels on the magnitude of receptor binding domain protein (RBD) and spike protein subunit 1 (S1) and 2 (S2) while accounting for known covariates. Body fat percentage was inversely associated with the magnitude of S1 (p = 0.006, β = − 366.56), RBD (p = 0.003, β = − 249.30), and S2 (p = 0.106, β = − 190.08) antibodies present in the serum following SARS-CoV-2 mRNA vaccination. Given the increasing number of infections, variants, and the known waning effects of vaccination, future mRNA vaccinations such as boosters are encouraged to sustain immunity; reducing excess body fat may improve the efficacy of these vaccinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call