Abstract

We report on the finding of a hard carbon structure in body centered cubic $(I{2}_{1}3)$ symmetry that possesses an extremely high bulk modulus (386 GPa) and Vickers hardness (60 GPa) comparable to that of $c$-BN and diamond. This carbon phase has a 14-atom primitive cell in an all-${sp}^{3}$ bonding network comprising five-membered rings, making it a truly full-fledged pentadiamond. Total energy calculations show that it is more stable than the previously reported diamondlike six-membered-ring bonded BC8 and BC12 carbon phases. Electronic band structure calculations show that it is an insulator with an indirect band gap of 5.64 eV. Simulated x-ray diffraction patterns and lattice parameters provide an excellent match to the previously unexplained distinct diffraction peaks found in carbon soot. The present results establish a distinct type of carbon phase and offer insights into its outstanding structural, mechanical, and electronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.