Abstract

Body cell mass (BCM) is the metabolically active cell mass involved in O2 consumption, CO2 production and energy expenditure. BCM measurement has been suggested as a tool for the evaluation of nutritional status. Since BCM is closely related to energy expenditure, it could also represent a good reference value for the calculation of nutrient needs. In a recent issue of Critical Care, Ismael and colleagues used bioelectrical impedance analysis parameters and anthropometric variables to evaluate BCM in patients with acute kidney injury, before and after a hemodialysis session. The results of this study suggest that BCM is relatively insensitive to major body fluid shifts, a well known factor interfering with nutritional evaluation/monitoring and energy need calculations in the ICU. Thus, BCM seems to be a more 'stable' nutritional variable, as it is apparently less influenced by non-nutritional factors. The results of this paper emphasize the need to identify biologically sound parameters for nutritional status evaluation and energy need calculation in critically ill patients; in this regard, BCM could fulfill these expectations.

Highlights

  • Body cell mass (BCM) is the metabolically active cell mass involved in O2 consumption, CO2 production and energy expenditure

  • In a recent issue of Critical Care, Ismael and colleagues [1] reported the results of a study on 31 hemodynamically stable patients with acute kidney injury requiring hemodialysis and able to tolerate ultrafiltration rates of ≥5% body weight per session

  • They derived intra- and extracellular water volumes from low- and high-frequency resistances measured by multifrequency bioelectrical impedance analysis (BIA) of body compartments, before and after hemodialysis

Read more

Summary

Introduction

Body cell mass (BCM) is the metabolically active cell mass involved in O2 consumption, CO2 production and energy expenditure. In a recent issue of Critical Care, Ismael and colleagues [1] reported the results of a study on 31 hemodynamically stable patients with acute kidney injury requiring hemodialysis and able to tolerate ultrafiltration rates of ≥5% body weight per session (mean weight loss of 3.8 kg).

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.