Abstract

Umbilical cord blood or serum concentrations of mercury, lead, selenium and copper were measured with inductively coupled plasma mass spectrometry in a population of 300 infants born in Baltimore, Maryland. Geometric mean values were 1.37 μg/L (95% confidence interval: 1.27, 1.48) for mercury; 0.66 μg/dL (95% CI: 0.61, 0.71) for lead; and 38.62 μg/dL (95% CI: 36.73, 40.61) for copper. Mean selenium was 70.10 μg/L (95% CI: 68.69, 70.52). Mercury, selenium and copper levels were within exposure ranges reported among similar populations, whereas the distribution of lead levels was lower than prior reports; only one infant had a cord blood lead above 10 μg/dL. Levels of selenium were significantly correlated with concentrations of lead (Spearman's ρ=0.20) and copper (Spearman's ρ=0.51). Multivariable analyses identified a number of factors associated with one of more of these exposures. These included: increase in maternal age (increased lead); Asian mothers (increased mercury and lead, decreased selenium and copper); higher umbilical cord serum n−3 fatty acids (increased mercury, selenium and copper), mothers using Medicaid (increased lead); increasing gestational age (increased copper); increasing birthweight (increased selenium); older neighborhood housing stock (increased lead and selenium); and maternal smoking (increased lead). This work provides additional information about contemporary prenatal element exposures and can help identify groups at risk of atypical exposures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.