Abstract

Hierarchical brain-information-processing schemes have frequently assumed that the flexible but slow voluntary action modulates a direct sensorimotor process that can quickly generate a reaction in dynamical interaction. Here we show that the quick visuomotor process for manual movement is modulated by postural and visual instability contexts that are related but remote and prior states to manual movements. A preceding unstable postural context significantly enhanced the reflexive manual response induced by a large-field visual motion during hand reaching while the response was evidently weakened by imposing a preceding random-visual-motion context. These modulations are successfully explained by the Bayesian optimal formulation in which the manual response elicited by visual motion is ascribed to the compensatory response to the estimated self-motion affected by the preceding contextual situations. Our findings suggest an implicit and functional mechanism that links the variability and uncertainty of remote states to the quick sensorimotor transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.