Abstract

A low-cost and simple boron-dipyrromethene (BODIPY)-labeled aptasensor (B-aptamer) was designed for rapid, sensitive and turn-on catechin detection. B-aptamer as signal indicator and recognition element initially stacked on the surface of multi-walled carbon nanotubes (MWCNTs) via π-π conjugation, resulting in efficient quenching of the fluorescence of the aptasensor. Upon addition of catechin, catechin was adsorbed to B-aptamer, thereby undergoing a conformational change to form B-aptamer/catechin complex, which prompted the release of the signaling probe from the surface of MWCNTs. Hence, the fluorescence intensity (FL) of the B-aptamer was increasing with the increase of catechin concentrations with the limit of detection (LOD) of 5 ng/mL. Furthermore, the method was used to analyze catechin in food samples with the recovery rate of 92.7–107.1 %. This method provided a proper analysis method for clinical analysis and pharmaceutical quality control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call