Abstract

In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45° between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted lowest unoccupied molecular orbital by 0.4eV as well as blueshifted absorption by up to 150nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954V compared to 4.47% and 0.739V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.