Abstract

Two stable boron dipyrromethene (BODIPY)-based antiaromatic macrocycles, Mc-Fur and Mc-Th, were synthesized through a one-pot Knoevenagel condensation reaction between a BODIPY precursor and furan-2,5-dicarboxaldehyde or thiophene-2,5-dicarboxaldehyde, respectively. 1 H NMR spectroscopic characterization of the two macrocycles supported their highly antiaromatic character. The oxidation properties of the two macrocycles were studied through electron spin resonance spectroscopy and UV/Vis absorption spectrophotometry, which suggested the formation of a stable monoradical cation species on first oxidation followed by an aromatic dicationic species on subsequent oxidation. Both molecules have a nearly planar π-conjugated backbone and show a strong tendency to aggregate in solution due to efficient stacking of the antiaromatic macrocycles. Transient absorption and two-photon absorption (TPA) measurements in solution and aggregated states of the macrocycles revealed that aggregation resulted in large enhancement of TPA cross sections and increased excited-state lifetimes, in accordance with the decrease in the antiaromatic character in the aggregated state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call