Abstract

Problem statement. With the development of satellite navigation systems, new navigation BOC signals are being introduced. Since the structure of BOC signals differs from traditional BPSK signals, this complicates their processing, which may require hardware changes and often leads to the need to develop new ones. Objective. Synthesis and analysis of the BOC signal processing algorithm using two BPSK correlators, comparable in accuracy to the direct method. Results. The synthesis and analysis of the BOC signal delay tracking system using two correlators, originally designed to receive only BPSK-conducting signals, are carried out. The statistical characteristics of the delay discriminator are obtained. It is shown how the accuracy and sensitivity of the obtained delay tracking algorithm are correlated with respect to the reference algorithm, which assumes the use of a signal with a digital subcarrier in the reference signal of the correlator. The pull-in characteristic are obtained. Practical relevance. The processing algorithm BOC signals that doesn't require modification of the traditional correlators of the navigation receiver is presented. This algorithm is of great practical importance, since it allows for high-precision reception of modern BOC and AltBOC signals, despite the limitations characteristic of modern navigation equipment. For example, this algorithm allows to receive Galileo E5 signals using the popular NTLab NT1065 chip. A new signal pull-in algorithm is proposed. This algorithm allows to avoid abnormal tracking errors caused by the operation of the tracking system in the side zones of the s-curve. The pull-in characteristics for various receive conditions are given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.