Abstract

Second (board) level reliability of a stacked chip scale package (SCSP) under cyclic bending is conducted to evaluate the structural integrity of solder interconnects. The test vehicle (on-board SCSP) is simply supported at both ends and subjected to repetitive deflection in the middle (three-point bend). Cyclic deformation histories such as sinusoidal, triangular, and square waveforms are examined. Tremendous joint damage is observed as square-wave loading history was applied. Approximately 80% fatigue life degradation is found by bending several thermally aged samples having Ni/Au surface finish on Cu pads of package substrates and printed circuit boards. The observed failure mode is a brittle type fracture of intermetallic compound system, which is also known as effects of solder embrittlement. Measured fatigue life is characterized by two-parameter Weibull model with cumulative damage plot for each test condition. In addition to the comparisons of characteristic fatigue life for various package configuration and cyclic bending conditions, failure analysis is also employed to identify failure sites and mechanisms such as crack initiation and continuous growth to the complete fracture of solder joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.