Abstract

Increasing integration densities and high operating speeds lead to subtle manifestation of defects at the board level. Functional fault diagnosis is, therefore, necessary for board-level product qualification. However, ambiguous diagnosis results lead to long debug times and even wrong repair actions, which significantly increase repair cost and adversely impact yield. Advanced machine-learning (ML) techniques offer an unprecedented opportunity to increase the accuracy of board-level functional diagnosis and reduce high-volume manufacturing cost through successful repair. We propose a smart diagnosis method based on two ML classification models, namely, artificial neural networks (ANNs) and support-vector machines (SVMs) that can learn from repair history and accurately localize the root cause of a failure. Fine-grained fault syndromes extracted from failure logs and corresponding repair actions are used to train the classification models. We also propose a decision machine based on weighted-majority voting, which combines the benefits of ANNs and SVMs. Three complex boards from the industry, currently in volume production, and additional synthetic data, are used to validate the proposed methods in terms of diagnostic accuracy, resolution, and quantifiable improvement over current diagnostic software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.