Abstract

The study aimed to develop the open-source body and organ analysis (BOA), a comprehensive computed tomography (CT) image segmentation algorithm with a focus on workflow integration. The BOA combines 2 segmentation algorithms: body composition analysis (BCA) and TotalSegmentator. The BCA was trained with the nnU-Net framework using a dataset including 300 CT examinations. The CTs were manually annotated with 11 semantic body regions: subcutaneous tissue, muscle, bone, abdominal cavity, thoracic cavity, glands, mediastinum, pericardium, breast implant, brain, and spinal cord. The models were trained using 5-fold cross-validation, and at inference time, an ensemble was used. Afterward, the segmentation efficiency was evaluated on a separate test set comprising 60 CT scans. In a postprocessing step, a tissue segmentation (muscle, subcutaneous adipose tissue, visceral adipose tissue, intermuscular adipose tissue, epicardial adipose tissue, and paracardial adipose tissue) is created by subclassifying the body regions. The BOA combines this algorithm and the open-source segmentation software TotalSegmentator to have an all-in-one comprehensive selection of segmentations. In addition, it integrates into clinical workflows as a DICOM node-triggered service using the open-source Orthanc research PACS (Picture Archiving and Communication System) server to make the automated segmentation algorithms available to clinicians. The BCA model's performance was evaluated using the Sørensen-Dice score. Finally, the segmentations from the 3 different tools (BCA, TotalSegmentator, and BOA) were compared by assessing the overall percentage of the segmented human body on a separate cohort of 150 whole-body CT scans. The results showed that the BCA outperformed the previous publication, achieving a higher Sørensen-Dice score for the previously existing classes, including subcutaneous tissue (0.971 vs 0.962), muscle (0.959 vs 0.933), abdominal cavity (0.983 vs 0.973), thoracic cavity (0.982 vs 0.965), bone (0.961 vs 0.942), and an overall good segmentation efficiency for newly introduced classes: brain (0.985), breast implant (0.943), glands (0.766), mediastinum (0.880), pericardium (0.964), and spinal cord (0.896). All in all, it achieved a 0.935 average Sørensen-Dice score, which is comparable to the one of the TotalSegmentator (0.94). The TotalSegmentator had a mean voxel body coverage of 31% ± 6%, whereas BCA had a coverage of 75% ± 6% and BOA achieved 93% ± 2%. The open-source BOA merges different segmentation algorithms with a focus on workflow integration through DICOM node integration, offering a comprehensive body segmentation in CT images with a high coverage of the body volume.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.