Abstract

We have found that the platelet activating factor antagonist (BN52021) is an effective blocker of the glycine (Gly) receptor-mediated responses in the hippocampal pyramidal neurons of rat. Using the whole-cell voltage clamp and concentration clamp recording techniques, we investigated the mechanism underlying the inhibitory action of this terpenoid on the glycine-induced chloride current. BN52021 selectively and reversibly inhibits glycine current in a non-competitive and voltage-dependent fashion. The antagonistic effect of this substance is more pronounced at positive membrane potentials. At holding potential −70 mV and in the presence of 200 μM glycine IC 50 value for the blocking action of BN52021 was 270±10 nM. Repetitive applications of BN52021 reveal the use-dependence of its blocking action. When co-applied with strychnine (STR), a competitive glycine receptor antagonist, BN52021 does not alter the IC 50 value for strychnine. The inhibitory effect of BN52021 on gamma-aminobutyric acid (GABA) current is at least 25 times less potent than the effect on glycine current. This substance fails to affect AMPA and NMDA responses. It may be concluded that BN52021 inhibits glycine-gated Cl − channels by interacting with the pore region and does not compete for the strychnine-binding centre.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call