Abstract
As an important component of electronic devices, thermal interface materials (TIMs) provide a fast heat dissipation channel, which will significantly improve the reliability and long-term stability of electronic devices. Gel TIMs with good flexibility is a development direction for thermal management in the future. However, the green and environmental issues in the preparation of gel TIMs with good stability are also important problems that must be considered. Here, combining the advantages of green deep eutectics solvents and high thermal conductivity boron nitride, a boron nitride polymerizable deep eutectics solvents gel composite TIMs with high thermal conductivity, good stability and low thermal contact resistance (TCR) has been developed. The thermal conductivity of composite TIMs achieved 1.18 W/m·K at a boron nitride loading of 20 wt%. Under pressure gradient testing (10 Psi-50 Psi), the TCR of composite TIMs decreased to 0.76 K·cm2/W. In the temperature gradient test (30 °C-70 °C), the TCR of the composite TIMs dropped to 0.143 K·cm2/W. Furthermore, in the TCR cycling test, the composites showed better cycling stability. In addition, composite TIMs also show better thermal performance in practical applications. This work provides a green way for the fabrication of gel TIMs with high thermal conductivity, good stability and low TCR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.