Abstract

Despite the remarkable synthetic accomplishments in creating diverse polycyclic aromatic hydrocarbons with B-N bonds (BN-PAHs), their optoelectronic applications have been less exploited. Herein, we report the achievement of high-mobility organic semiconductors based on existing BN-PAHs through a "periphery engineering" strategy. Tetraphenyl- and diphenyl-substituted BN-anthracenes (TPBNA and DPBNA, respectively) are designed and synthesized. DPBNA exhibits the highest hole mobility of 1.3 cm2 V-1 s-1 in organic field-effect transistors, significantly outperforming TPBNA and all the reported BN-PAHs. Remarkably, this is the first BN-PAH with mobility over 1 cm2 V-1 s-1 , which is a benchmark value for practical applications as compared with amorphous silicon. Furthermore, high-performance phototransistors based on DPBNA are also demonstrated, implying the high potential of BN-PAHs for optoelectronic applications when the "periphery engineering" strategy is implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.