Abstract

<span lang="EN-US">Variations in sales over time is the main issue faced by many retailers. To overcome this problem, we attempt to predict the sales by comparing the previous sales data of different stores. Firstly, the primary task is to recognize the pattern of the factors that help to predict sales. This study helps us understand the data and predict sales using many machines learning models. This process gets the data and beautifies the data by imputing the missing values and feature engineering. While solving this problem, predicting the monthly sales value is significant in the study. In addition, an essential element is to clear the missing data and perform proper feature engineering to better understand them before applying them. The experimental results show that the random forest predictor has outperformed ridge regression, linear regression, and decision tree models among the four machine learning techniques implemented in this study. The performance of the proposed models has been evaluated using root mean square error (RMSE).</span>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.