Abstract

In recent research, the tumor microenvironment has been shown to attract mesenchymal stromal cells (MSCs), which is of particular interest due to its implications for cancer progression. The study focused on understanding the interaction between bone marrow-derived MSCs (BMSCs) and head and neck cancer (HNC) cells. This interaction was found to activate specific markers, notably the osteogenic marker alkaline phosphatase and the oncogene Runx2. These activations corresponded with the release of collagenase enzymes, MMP9 and MMP2. To gain insights into bone resorption related to this interaction, bovine bone slices were used, supporting the growth of "heterogeneous spheroids" that contained both BMSCs and HNC cells. Through scanning electron microscopy and energy-dispersive X-ray (EDX) analysis, it was observed that these mixed spheroids were linked to a notable increase in bone degradation and collagen fiber exposure, more so than spheroids of just BMSCs or HNC cells. Furthermore, the EDX results highlighted increased nitrogen content on bone surfaces with these mixed clusters. Overall, the findings underscore the significant role of BMSCs in tumor growth, emphasizing the need for further exploration in potential cancer treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call