Abstract
AimsTo investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomes in smoke inhalation lung injury. Main methodsIn this study, we initially isolated exosomes from BMSCs and identified them by western blot and transmission electron microscopy. BMSC-derived exosomes were then used to treat in vitro and in vivo models of smoke inhalation lung injury. Pathologic alterations in lung tissue, the levels of inflammatory factors and apoptosis-related factors, and the expression of HMGB1 and NF-κB were determined to evaluate the therapeutic effect of BMSC-derived exosomes. Key findingsWe found that BMSC-derived exosomes could alleviate the injury caused by smoke inhalation. Smoke inhalation increased the levels of inflammatory factors and apoptosis-related factors and the expression of HMGB1 and NF-κB, and these increases were reversed by BMSC-derived exosomes. HMGB1 overexpression abrogated the exosome-induced decreases in inflammatory factors, apoptosis-related factors and NF-κB. SignificanceCollectively, these results indicate that BMSC-derived exosomes can effectively alleviate smoke inhalation lung injury by inhibiting the HMGB1/NF-κB pathway, suggesting that exosome, a noncellular therapy, is a potential therapeutic strategy for inhalation lung injury.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.