Abstract
Brain tumors are one of the most dangerous health problems for adults and children in many countries. Any failure in the diagnosis of brain tumors may lead to shortening of human life. Accurate and timely diagnosis of brain tumors provides appropriate treatment to increase the patient's chances of survival. Due to the different characteristics of tumors, one of the challenging problems is the classification of three types of brain tumors. With the advent of deep learning (DL) models, three classes of brain tumor classification have been addressed. However, the accuracy of these methods requires significant improvements in brain image classification. The main goal of this article is to design a new method for classifying the three types of brain tumors with extremely high accuracy. In this paper, we propose a novel deep stacked ensemble model called "BMRI-NET" that can detect brain tumors from MR images with high accuracy and recall. The stacked ensemble proposed in this article adapts three pre-trained models, namely DenseNe201, ResNet152V2, and InceptionResNetV2, to improve the generalization capability. We combine decisions from the three models using the stacking technique to obtain final results that are much more accurate than individual models for detecting brain tumors. The efficacy of the proposed model is evaluated on the Figshare brain MRI dataset of three types of brain tumors consisting of 3064 images. The experimental results clearly highlight the robustness of the proposed BMRI-NET model by achieving an overall classification of 98.69% and an average recall, F1-score and MCC of 98.33%, 98.40, and 97.95%, respectively. The results indicate that the proposed BMRI-NET model is superior to existing methods and can assist healthcare professionals in the diagnosis of brain tumors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Interdisciplinary Sciences: Computational Life Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.