Abstract
The BMP/SMAD4 pathway has major effects on liver hepcidin levels. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trf(hpx/hpx)). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells. These effects correlated with reduced cellular levels of pSMAD1/5/8. Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels. Thus Bmper may play an important role in suppressing hepcidin production in hypotransferrinemic mice.
Highlights
The mechanism by which anemia results in lowered hepcidin levels is not clear
Addition of BMPER peptide to primary human hepatocytes abolished the BMP2-dependent increase in hepcidin mRNA, whereas injection of Bmper peptide into mice resulted in reduced liver hepcidin and increased serum iron levels
In contrast Bmper protein and mRNA levels were both markedly increased in liver of Trfhpx/hpx mice compared with control mice (Fig. 1, A–C)
Summary
Bone morphogenetic protein (BMP)-binding endothelial cell precursor-derived regulator (BMPER), a known BMP antagonist, was found to be up-regulated in anemic Trfhpx/hpx mice and to suppress hepcidin transcription both in vivo and in vitro. Bone morphogenetic protein-binding endothelial cell precursor-derived regulator (Bmper), a known regulator of BMP signaling, was found to be overexpressed at the mRNA and protein levels in liver of genetically hypotransferrinemic mice (Trfhpx/hpx). Soluble BMPER peptide inhibited BMP2- and BMP6-dependent hepcidin promoter activity in both HepG2 and HuH7 cells These effects correlated with reduced cellular levels of pSMAD1/5/8. Various signaling pathways have been shown to regulate hepatic hepcidin levels with bone morphogenetic proteins, Bmps In this report we show that Bmper can suppress hepcidin promoter activity and reduce hepcidin levels in liver cells both in vitro and in vivo via effects on the BMP pathway
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.