Abstract
Phosphorylation of the central adaptor protein complex, AP-2 is pivotal for clathrin-mediated endocytosis (CME). Here, we uncover the role of an uncharacterized kinase (BMP-2 inducible kinase-BMP2K) in AP-2 phosphorylation. We demonstrate that BMP2K can phosphorylate AP-2 in vitro and in vivo. Functional impairment of BMP2K impedes AP-2 phosphorylation leading to defects in clathrin-coated pit (CCP) morphology and cargo internalization. BMP2K engages AP-2 via its extended C-terminus and this interaction is important for its CCP localization and function. Notably, endogenous BMP2K levels decline upon functional impairment of AP-2 indicating AP-2 dependent BMP2K stabilization in cells. Further, functional inactivation of BMP2K in zebrafish embryos yields gastrulation phenotypes which mirror AP-2 loss-of-function suggesting physiological relevance of BMP2K in vertebrates. Together, our findings propose involvement of a novel kinase in AP-2 phosphorylation and in the operation of CME.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.