Abstract

Tooth development is regulated by epithelial-mesenchymal interactions and their reciprocal molecular signaling. Bone morphogenetic protein 2 (BMP2) is known as one of the inducers for tooth development. To analyze the molecular mechanisms of BMP2 on ameloblast differentiation (amelogenesis), we performed microarray analyses using rat dental epithelial cell line, HAT-7. After confirming that BMP2 could activate the canonical BMP-Smads signaling in HAT-7 cells, we analyzed the effects of BMP2 on 14,815 gene expressions and profiled them. Seventy-three genes were up-regulated and 28 genes were down-regulated by BMP2 treatment for 24 hours in HAT-7 cells. Functional classification revealed that 18% of up-regulated genes were ECM/adhesion molecules present in the enamel organ. Furthermore, we examined the expression of several differentiation markers in dental epithelial four cell-lineages including inner enamel epithelium (ameloblasts), stratum intermedium, stratum reticulum, and outer enamel epithelium. The results indicated that BMP2 might induce at least two different cell-lineage markers including a BMP antagonist expressed in HAT-7 cells, suggesting that BMP2 could accelerate amelogenesis via BMP signaling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call