Abstract

In this study, we fabricated a novel micro porous hybrid scaffold of biphasic calcium phosphate (BCP) and a polylectrolyte complex (PEC) of chitosan (CS) and hyaluronic acid (HA). The fabrication process included loading of CS-HA PEC in a bare BCP scaffold followed by lypophilization. SEM observation and porosimetry revealed that the scaffold was full of micro and macro pores with total porosity of more than 60 % and pore size in the range of 20~200μm. The composite scaffold was mechanically stronger than the bare BCP scaffold and was significantly stronger than the CS-HA PEC polymer scaffold. Bone morphogenetic growth factor (BMP-2) was immobilized in CS-HA PEC in order to integrate the osteoinductive potentiality required for osteogenesis. The BCP frame, prepared by sponge replica, worked as a physical barrier that prolonged the BMP-2 release significantly. The preliminary biocompatibility data show improved biological performance of the BMP-2 immobilized hybrid scaffold in the presence of rabbit bone marrow stem cells (rBMSC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call