Abstract

Even though the regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied, there is a debate regarding their minimal therapeutic properties. Bone morphogenetic proteins (BMP) are involved in cartilage metabolism, chondrogenesis, and bone healing. In this study, we aimed to analyze the role of genome-edited BMP-2 overexpressing amniotic mesenchymal stem cells (AMMs) in a mouse model of collagen-induced arthritis (CIA). The BMP-2 gene was synthesized and inserted into AMMs using transcription activator-like effector nucleases (TALENs), and BMP-2-overexpressing AMMs (AMM/B) were sorted and characterized using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The co-culture of AMM/B with tumor necrosis factor (TNF)-α-treated synovial fibroblasts significantly decreased the levels of interleukin (IL)-34. The therapeutic properties of AMM/B were evaluated using the CIA mouse model. The injection of AMM/B attenuated CIA progression and inhibited T helper (Th)17 cell activation in CIA mice. In addition, the AMM/B injection increased proteoglycan expression in cartilage and decreased the infiltration of inflammatory cells and factors, including IL-1β, TNF-α, cyclooxygenase (COX)-2, and Nuclear factor kappa B (NF-kB) in the joint tissues. Therefore, editing the BMP-2 genome in MSCs might be an alternative strategy to enhance their therapeutic potential for treating cartilage degeneration in arthritic joints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.