Abstract

In the current paper, we obtain discrepancy estimates in exponential Orlicz and BMO spaces in arbitrary dimension d ≥ 3. In particular, we use dyadic harmonic analysis to prove that the dyadic product BMO and exp(L2/(d−1)) norms of the discrepancy function of so-called digital nets of order two are bounded above by (logN)(d−1)/2. The latter bound has been recently conjectured in several papers and is consistent with the best known low-discrepancy constructions. Such estimates play an important role as an intermediate step between the well-understood Lp bounds and the notorious open problem of finding the precise L∞ asymptotics of the discrepancy function in higher dimensions, which is still elusive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.