Abstract
The Border Gateway Protocol (BGP) is in charge of the route exchange at the Internet scale. Anomalies in BGP's behaviour can have several causes (e.g. mis-configuration, outage and attacks) and despite being rare, their consequences can threaten the Internet stability and reliability. The study of such anomalies requires the extraction of specific features and internet topology from BGP data. The literature shows that adhoc procedures and tools have been developed to extract specific features to train machine learning models for anomaly detection. In this paper we propose BML, a BGP dataset generation tool that extracts the majority of known features in the literature, the internet topology and that allows the user to build specific features from BGP data. We illustrate the use of BML on a BGP anomaly by extracting 32 synthetic features and 14 BGP's graphs features which allow a comprehensive understanding of the Border Gateway Protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.