Abstract

The Polycomb-repressive complex 1 (PRC1) protein BMI1 is of major importance in the epigenetic regulation of gene expression. The repression of important tumour suppressor genes (such a P16INK4a and P14ARF) by means of chromatin remodeling has marked BMI1 as a proto-oncoprotein. We previously found evidence that posttranslational modification by phosphorylation may be implicated in the stability and functioning of BMI1. Furthermore, we found that KAP1, through direct interaction with BMI1, may be implicated in regulation of BMI1 functioning. I here begin to elucidate how phosphorylation affects BMI1 and how KAP1 regulates BMI1. Several U2OS or TIG3ER cell lines were created that overexpressed BMI1 wild type and mutants that either contain phospho-mimic or phospho-null mutations. shRNA’s were used to effectively knockdown KAP1 expression. The effect of BMI1 mutant overexpression and/or KAP1 knock down on proliferation was measured under cell stress conditions induced by arsenite, selenite or etoposide. The effect of KAP1 knock down and mutant KAP1 lacking the RingFinger domain (KAP1-DeltaRF) on sub-cellular localization was assessed in U2OS cells. Finally functional interaction between KAP1 and PRC1 was measured by analysis of transcriptional induction of the PRC1-target gene ATF3 upon mitogenic stimulation. BMI1 overexpression partially rescues arsenite induced senescence; this rescue activity is affected by its phosphorylation status. KAP1 knockdown increases the effect of BMI1 overexpression on proliferation under arsenite induced cell stress but ablates the differences observed between different BMI1 phospho-mutants. KAP1 induced increases of ATF3 induction point towards a functional interaction between KAP1 and PRC1. My experiments provide experimental indication that BMI1 affects proliferation under arsenite induced cell stress condition. This effect was enhanced by KAP1 knockdown suggesting that KAP1 inhibits the pro-proliferative effects of BMI1. Increased ATF3 induction in the presence of KAP1-DeltaRF mutant protein suggests that the KAP1 negatively controls expression of ATF3 in a RF-dependent manner. Further research is required to elucidate the exact molecular mechanisms underlying the function interaction of BMI1 and KAP1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call