Abstract

Knockout and knockdown studies have shown that the polycomb gene Bmi-1 is important for mouse postnatal and prenatal neural stem cells (NSCs) self-renewal and proliferation. Different downstream targets of Bmi-1 gene have been identified in mouse, including Ink4a/Arf locus in adult NSCs and p21 gene in embryonic NSCs. However, little is known regarding the role of Bmi-1 in human NSCs. Here, using lentiviral-delivered shRNA knockdown and over-expression techniques, we examined whether Bmi-1 is required for the self-renewal and proliferation of human fetal NSCs (hfNSCs) in vitro. Our results showed that shRNA-mediated Bmi-1 reduction profoundly impaired hfNSCs self-renewal and proliferation, whereas Bmi-1 over-expression promoted hfNSCs self-renewal capacity. Interestingly, different from mouse embryonic NSCs, Bmi-1 repressed Ink4a/Arf locus instead of p21 gene in human fetal NSCs. Moreover, Bmi-1 knockdown induced obvious senescence phenotype in hfNSCs. Further studies on the Bmi-1 pathways would help to understand the molecular mechanisms underlying hfNSCs self-renewal and human brain development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.