Abstract

Deregulation of the polycomb group gene BMI-1 is implicated in the pathogenesis of many human cancers. In this study, we have investigated if the Ewing sarcoma family of tumors (ESFT) expresses BMI-1 and whether it functions as an oncogene in this highly aggressive group of bone and soft tissue tumors. Our data show that BMI-1 is highly expressed by ESFT cells and that, although it does not significantly affect proliferation or survival, BMI-1 actively promotes anchorage-independent growth in vitro and tumorigenicity in vivo. Moreover, we find that BMI-1 promotes the tumorigenicity of both p16 wild-type and p16-null cell lines, demonstrating that the mechanism of BMI-1 oncogenic function in ESFT is, at least in part, independent of CDKN2A repression. Expression profiling studies of ESFT cells following BMI-1 knockdown reveal that BMI-1 regulates the expression of hundreds of downstream target genes including, in particular, genes involved in both differentiation and development as well as cell-cell and cell-matrix adhesion. Gain and loss of function assays confirm that BMI-1 represses the expression of the adhesion-associated basement membrane protein nidogen 1. In addition, although BMI-1 promotes ESFT adhesion, nidogen 1 inhibits cellular adhesion in vitro. Together, these data support a pivotal role for BMI-1 ESFT pathogenesis and suggest that its oncogenic function in these tumors is in part mediated through modulation of adhesion pathways.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call