Abstract

ContextIt is important to identify patients at highest risk of fractures.ObjectiveTo compare the separate and combined performances of bone-related genetic risk scores (GRSs) for prediction of forearm, hip and vertebral fractures separately, as well as of trabecular and cortical bone microstructure parameters separately.Design, Setting, and ParticipantsUsing 1103 single nucleotide polymorphisms (SNPs) independently associated with estimated bone mineral density of the heel (eBMD), we developed a weighted GRS for eBMD and determined its contribution to fracture prediction beyond 2 previously developed GRSs for femur neck BMD (49 SNPs) and lumbar spine BMD (48 SNPs). Associations between these GRSs and forearm (ncases = 1020; ncontrols = 2838), hip (ncases = 1123; ncontrols = 2630) and vertebral (ncases = 288; ncontrols = 1187) fractures were evaluated in 3 Swedish cohorts. Associations between the GRSs and trabecular and cortical bone microstructure parameters (n = 426) were evaluated in the MrOS Sweden cohort.ResultsWe found that eBMDGRS was the only significant independent predictor of forearm and vertebral fractures while both FN-BMDGRS and eBMDGRS were significant independent predictors of hip fractures. The eBMDGRS was the major GRS contributing to prediction of trabecular bone microstructure parameters while both FN-BMDGRS and eBMDGRS contributed information for prediction of cortical bone microstructure parameters.ConclusionsThe eBMDGRS independently predicts forearm and vertebral fractures while both FN-BMDGRS and eBMDGRS contribute independent information for prediction of hip fractures. We propose that eBMDGRS captures unique information about trabecular bone microstructure useful for prediction of forearm and vertebral fractures. These findings may facilitate personalized medicine to predict site-specific fractures as well as cortical and trabecular bone microstructure separately.

Highlights

  • Design, Setting, and Participants: Using 1103 single nucleotide polymorphisms (SNPs) independently associated with estimated bone mineral density of the heel, we developed a weighted genetic risk score (GRS) for eBMD and determined its contribution to fracture prediction beyond 2 previously developed genetic risk scores (GRSs) for femur neck BMD (49 SNPs) and lumbar spine BMD (48 SNPs)

  • We propose that eBMDGRS captures unique information about trabecular bone microstructure useful for prediction of forearm and vertebral fractures

  • Fracture risk is inversely associated with bone strength, which is dependent on bone mineral density (BMD) as well as bone quality parameters such as trabecular and cortical bone microstructure parameters [2, 3]

Read more

Summary

Introduction

Design, Setting, and Participants: Using 1103 single nucleotide polymorphisms (SNPs) independently associated with estimated bone mineral density of the heel (eBMD), we developed a weighted GRS for eBMD and determined its contribution to fracture prediction beyond 2 previously developed GRSs for femur neck BMD (49 SNPs) and lumbar spine BMD (48 SNPs). Associations between these GRSs and forearm (ncases = 1020; ncontrols = 2838), hip (ncases = 1123; ncontrols = 2630) and vertebral (ncases = 288; ncontrols = 1187) fractures were evaluated in 3 Swedish cohorts. Associations between the GRSs and trabecular and cortical bone microstructure parameters (n = 426) were evaluated in the MrOS Sweden cohort

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call