Abstract

Real-time and accurate prediction of charging pile energy demands in electric vehicle (EV) charging networks contributes significantly to load shedding and energy conservation. However, existing methods usually suffer from either data privacy leakage problems or heavy communication overheads. In this article, we propose a novel blockchain-based personalized federated deep learning scheme, coined <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P^{3}$</tex-math></inline-formula> , for privacy-preserving energy demands prediction in EV charging networks. Specifically, we first design an accurate deep learning-based energy demands prediction model for charging piles, by making use of the CNN, BiLSTM, and attention mechanism. Second, we develop a blockchain-based hierarchical and personalized federated learning framework with a consensus committee, allowing charging piles to collectively establish a comprehensive energy demands prediction model in a low-latency and privacy-preserving way. Last, a CKKS cryptosystem based secure communication protocol is crafted to guarantee the confidentiality of model parameters while model training. Extensive experiments on two real-world datasets demonstrate the superiorities of the proposed <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P^{3}$</tex-math></inline-formula> scheme in accurately predicting real-time energy demands over state-of-the-art schemes. Further, the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$P^{3}$</tex-math></inline-formula> scheme can achieve reasonably low computational costs, compared with other homomorphic-based schemes, such as Paillier and BFV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.