Abstract

We investigate the effects of crowding on the conformations and assembly of confined, highly charged, and thick polyelectrolyte brushes in the osmotic regime. Particle tracking experiments on increasingly dense suspensions of colloids coated with ultralong double-stranded DNA (dsDNA) fragments reveal nonmonotonic particle shrinking, aggregation, and re-entrant ordering. Theory and simulations show that aggregation and re-entrant ordering arise from the combined effect of shrinking, which is induced by the osmotic pressure exerted by the counterions absorbed in neighbor brushes and of a short-range attractive interaction competing with electrostatic repulsion. An unconventional mechanism gives origin to the short-range attraction: blunt-end interactions between stretched dsDNA fragments of neighboring brushes, which become sufficiently intense for dense and packed brushes. The attraction can be tuned by inducing free-end backfolding through the addition of monovalent salt. Our results show that base stacking is a mode parallel to hybridization to steer colloidal assembly in which attractions can be fine-tuned through salinity and, potentially, grafting density and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.