Abstract
Many efforts have been devoted to exploring novel luminescent materials that do not contain expensive or toxic elements, or do not need mercury vapor plasma as the excitation source. In this paper, amorphous Al2O3 powder samples were prepared via the Pechini-type sol-gel process. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), photoluminescence (PL) excitation and emission spectra, kinetic decay, and electron paramagnetic resonance (EPR). The obtained amorphous Al2O3 powder samples annealed at 500 and 600 degrees C exhibit bright bluish-white emission centered at 430 and 407 nm, respectively. The luminescent mechanisms of the amorphous Al2O3 powder samples can be ascribed to the carbon-related impurities such as radical carbonyl species. The calculated band structure of the defective amorphous Al2O3 agrees well with the results of spectral analysis and the proposed luminescent mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.