Abstract
We propose a novel active-flow-control strategy for bluff bodies to hide their hydrodynamic traces, i.e., strong shears and periodically shed vortices, from predators. A group of windward-suction-leeward-blowing (WSLB) actuators are adopted to control the wake of a circular cylinder submerged in a uniform flow. An array of velocity sensors is deployed in the near wake to provide feedback signals. Through the data-driven deep reinforcement learning, effective control strategies are trained for the WSLB actuation to mitigate the cylinder's hydrodynamic signatures. Only a 0.29% deficit in streamwise velocity is detected, which is a 99.5% reduction from the uncontrolled value. The same control strategy is found also to be effective when the cylinder undergoes transverse vortex-induced vibration. The findings from this study can shed some light on the design and operation of underwater structures and robotics to achieve hydrodynamic stealth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.