Abstract

Much recent progress has been made in the study of nematic solids, both glassy and elastomeric, particularly in the realm of stress-free, defect-driven deformation in thin sheets of material. In this paper we consider a subset of texture domains in nematic glasses that are simple to synthesize, and explore the ways that these simple domains may be compatibly combined to yield analogs of the traditional smooth disclination defect textures seen in standard liquid crystals. We calculate the deformation properties of these constructed textures, and show that, subject to the compatibility constraints of the construction, these textures may be further combined to achieve shape blueprinting of three-dimensional structures from flat sheets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call