Abstract

With the surge in the volumes and dimensions of data defined in non-Euclidean spaces, graph signal processing (GSP) techniques are emerging as important tools in our understanding of these domains [1]. A fundamental problem for GSP is to determine which nodes play the most important role; so, graph signal sampling and recovery thus become essential [2]. In general, most of the current sampling methods are based on graph spectral decompositions where the graph Fourier transform (GFT) plays a central role [2]. Although adequate in many cases, they are not applicable when the graphs are large and where spectral decompositions are computationally difficult [3]. After years of beautiful and useful theoretical insights developed in this problem, the interest has now centered on finding more efficient methods for the computation of good sampling sets. Looking to the spatial domain for inspiration, substantial research has been performed that looks at the use of spatial point processes to define stochastic sampling grids with a particular interest at point processes that generate blue noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.