Abstract

Undoped SrSO4 nanoplates were synthesized via the composite hydroxide-mediated approach. The products were characterized by means of X-ray diffractometry, scanning electron microscopy, X-ray energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, photoluminescence (PL) spectroscopy, electron spin resonance technique, afterglow spectroscopy, and thermoluminescence dosimetry. The steady-state PL spectrum of undoped SrSO4 nanoplates can be deconvoluted into two distinct Gaussian bands centered at 2.97 eV (417.2 nm) and 2.56 eV (484.4 nm), respectively. The nature of the defect emissions is confirmed through the emission-wavelength-dependent PL decays as well as the excitation-wavelength-dependent PL decays. A cyan-colored afterglow from undoped SrSO4 nanoplates can be observed with naked eyes in the dark, and the afterglow spectrum of the undoped SrSO4 nanoplates exhibits a peak at about 492 nm (2.52 eV). The duration of the afterglow is measured to be 16 s. The thermoluminescence glow curve of the undoped SrSO4 nanoplates shows a peak at about 40.1 °C. The trapping parameters are determined with the peak shape method, the calculated value of the trap depth is 0.918 eV, and the frequency factor is 1.2 × 1014 s–1. Using density functional calculations, the band structures and densities of states of oxygen-deficient SrSO4 and strontium-deficient SrSO4 are presented. The mechanisms of the cyan-colored afterglow are discussed for undoped SrSO4, and the oxygen vacancies in SrSO4 are proposed to be the luminescence center of the afterglow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call