Abstract

The idea of forming van der Waals (vdW) heterostructures by integrating various two-dimensional materials breaks the limitation of the restricted properties of single material systems. In this work, the electronic structure modulation, stability, entire stress response and the Li adsorption properties of heterostructures by combining blue phosphorene (BlueP) and MS2 (M = Nb, Ta) together were systematically investigated using first-principles calculations based on vdW corrected density functional theory. We revealed that BlueP/MS2 vdW heterostructures possess good structural stability with negative formation energy, enhanced electrical conductivity, improved mechanical flexibility (ultimate strain >17%) and high-capacity (528.257 mAhg(-1) for BlueP/NbS2). The results suggest that BlueP/NbS2 and BlueP/TaS2 heterostructures are ideal candidates used as promising flexible electrode for high recycling rate and portable lithium-ion batteries, which satisfy the requirement of next-generation flexible energy storage and conversion devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.