Abstract
In the past few years great progress has been made in identifying and characterizing plant photoreceptors active in the blue/UV-A regions of the spectrum. These photoreceptors include cryptochrome 1 and cryptochrome 2, which are similar in structure and chromophore composition to the prokaryotic DNA photolyases. However, they have a C-terminal extension that is not present in photolyases and lack photolyase activity. They are involved in regulation of cell elongation and in many other processes, including interfacing with circadian rhythms and activating gene transcription. Animal cryptochromes that play a photoreceptor role in circadian rhythms have also been characterized. Phototropin, the protein product of the NPH1 gene in Arabidopsis, likely serves as the photoreceptor for phototropism and appears to have no other role. A plasma membrane protein, it serves as photoreceptor, kinase, and substrate for light-activated phosphorylation. The carotenoid zeaxanthin may serve as the chromophore for a photoreceptor involved in blue-light-activated stomatal opening. The properties of these photoreceptors and some of the downstream events they are known to activate are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.