Abstract

Light is one of the most important environmental factors regulating expression of photosynthesis genes. The plastid psbD gene encoding the photosystem II reaction center protein D2 is under the control of a unique blue light responsive promoter (BLRP) that is transcribed by a bacterial-type plastid RNA polymerase (PEP). Promoter recognition of PEP is mediated by one of the six nuclear-encoded sigma factors in Arabidopsis. The replacement of the plastid sigma factor associated with PEP may be the major mechanism for switching of plastid transcription pattern in response to environmental and developmental signals. This study demonstrates that AtSig5 is a unique sigma factor that is essential for psbD BLRP activity. A T-DNA insertional mutant with reduced AtSIG5 expression resulted in loss of primary transcripts from the psbD BLRP. Furthermore, transient overexpression of AtSig5 in dark-adapted protoplasts specifically elevated psbD and psbA transcription activities. On the other hand, overproduction of AtSig2 enhanced the transcription of psbA gene and trnE operon, but not psbD transcription. The AtSIG5 gene is phylogenetically distinct from other plastid sigma factors, and its expression is induced exclusively by blue light. We propose that AtSig5 acts as a mediator of blue light signaling that specifically activates the psbD BLRP in response to blue light in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call