Abstract
The nonlinear propagation of ultrashort pulses in a microstructured fiber is experimentally investigated. By working around 800 nm, in the anomalous dispersion region, clear evidence of pulse break-up and soliton propagation is obtained. This is consistent with the recently suggested mechanism of spectral broadening based upon the fission of higher order solitons into red-shifted fundamental solitons and blue-shifted dispersion waves. When 190-fs pulses at high input intensities are used, the output spectrum is made of a broad infrared supercontinuum coexisting with a sharp and very intense blue peak that takes up to 24% of the input power. We tentatively propose an explanation of this effect by invoking pulse-trapping phenomena controlled by the group-velocity matching of infrared and visible pulses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.