Abstract

Hyperphosphorescent organic light-emitting diodes (HPOLEDs) are drawing increased attention, as the efficient Förster resonance energy transfer (FRET) from phosphorescent sensitizer to the narrowband fluorescent terminal emitter may give improved performances. In this work, we reported a class of Ir(III) phosphors based on the di-trifluoromethyl (CF3) substituted imidazo[4,5-c]pyridin-2-ylidene chelates; i.e., (L6F) and (L6FB). The f-isomers exhibited efficient blue emission with peak max. 443 − 462 nm, while m-counterparts exhibited green emission between 501 – 512 nm in degassed toluene solution. The theoretical calculation indicates divergent MLCT, LLCT and ILCT contributions for distinctive isomers. OLEDs based on dopant m-Ir(L6FB)3 exhibited green luminescence at 505 nm, EQEmax of 20.3 % and CIEx,y of (0.277, 0.462), while respective HPOLEDs with terminal emitter ν-DABNA showed blue hyperphosphorescence peaking at 468 nm, EQEmax of 25.2 %, CIEx,y of (0.174, 0.204) and EQE of 22.7 % at 1000 cd·m-2. Therefore, our finding demonstrates the effective conversion of the green electrophosphorescence to blue hyperphosphorescence via the rapid FRET process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.