Abstract
Two novel tetrafluorobenzocarbazole and containing the amino branch introduced at the end of the molecule are synthesized by a simple method. The tetrafluorobenzocarbazole as the electron donor with electron-rich fluoride ions connected by π-benzyl ring conjugation structure, which affects the overall electron cloud density. Moreover, the amino branch introduced at the end of the molecule, which makes it easy to form intermolecular hydrogen bonds and affected photophysical properties. Meanwhile, the photophysical property of both compounds are discussed under different acidic conditions. The UV-absorption show that around ~286nm is mainly attributed to the strong structural absorption band peak of the π-π ∗ transition of the carbazole moiety, and the irregular absorption band around ~314nm and ~326nm are mainly attributed to the n-π ∗ transition of the carbazole group conjugate with the adjacent molecule. The emission spectrum of both compounds showed that the intensity of fluorescence decreased in different degrees after the addition of the acidic solution. Furthermore, the electrochemical properties were evidenced by cyclic voltammetry (CV) and density functional theory (DFT) calculations, and the orbital conformation (HOMOs-LUMOs) was simulated by Gaussian 09 software and its crystal structure was observed by X-ray diffraction (XRD). The results exhibited that both compounds are electrochemically stable blue small-molecule fluorescent substances, and expected that both compounds can be novel and stable acid-sensitive organic blue-light materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.