Abstract

A series of blue fluorescent 9,9-diethyl-2,7-distyryl-9H-fluorene derivatives with various capping moieties such as diphenylamino; diphenylphosphino; triphenylsilyl; phenoxy; phenylmercapto; phenylselenoxy; and triphenymethyl groups were synthesized using the Honor–Emmons reaction. The highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels were characterized with a photoelectron spectrometer and rationalized with quantum mechanical density functional theory calculations. The electroluminescent properties were explored through the fabrication of multilayer devices with a structure of Indium-tin-oxide/ N,N′-diphenyl- N,N′-(1-napthyl)-(1,1′-phenyl)-4,4′-diamine/2-methyl-9,10-di(2-naphthyl)anthracene:blue dopants (5–15 wt.%)/4,7-diphenyl-1,10-phenanthroline/lithium quinolate/Al. All devices, except that using NPh 2, exhibited a Commission Internationale de I'Eclairage (CIE) y value less than 0.19. The best luminous efficiency of 3.87 cd/A and external quantum efficiency of 2.65% at 20 mA/cm 2 were obtained in a device comprising the 4-phenylsulfanyl capped 9,9-diethyl-2,7-distyrylfluorene derivative with CIE coordinates (0.16, 0.18).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.