Abstract

Based on first-principle calculations, we proposed a one two-dimensional (2D) blue AsP (b-AsP) monolayer as an ideal anode material for lithium/sodium-ion (Li/Na-ion) batteries for the first time. The b-AsP monolayer possesses thermal and dynamic stabilities. The system undergoes the transition from semiconductor to metal after Li/Na atoms are embedded, which ensures good electric transportation. Most remarkably, our results indicate that the b-AsP monolayer exhibits high theoretical capacities of 1011.2 mA h g-1 (for Li) and 1769.6 mA h g-1 (for Na), low average open circuit voltages of 0.17 eV for Li4AsP and 0.14 eV for Na7AsP systems and ultrafast diffusivity with the low energy barriers of 0.17/0.15 eV and 0.08/0.07 eV of the P/As sides for Li and Na, respectively. Given these exceptional properties, the synthesis of a buckled b-AsP monolayer is desired to achieve a promising electrode material for Li- and Na-ion batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call