Abstract

We study the singularity formation of smooth solutions of the relativistic Euler equations in (3 + 1)-dimensional spacetime for both finite initial energy and infinite initial energy. For the finite initial energy case, we prove that any smooth solution, with compactly supported non-trivial initial data, blows up in finite time. For the case of infinite initial energy, we first prove the existence, uniqueness and stability of a smooth solution if the initial data is in the subluminal region away from the vacuum. By further assuming the initial data is a smooth compactly supported perturbation around a non-vacuum constant background, we prove the property of finite propagation speed of such a perturbation. The smooth solution is shown to blow up in finite time provided that the radial component of the initial ``generalized'' momentum is sufficiently large.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call