Abstract

To study the mechanism by which high-dimensional chaos emerges in neural systems, the synchronization of chaotic firings in class 1 pulse neural networks composed of excitatory and inhibitory ensembles was analyzed. In the system with two modules (i.e. two pulse neural networks), blowout bifurcation and on–off intermittency were observed when the inter-module connection strengths were reduced from large values. In the system with three modules, rearrangement of synchronized clusters and chaotic itinerancy were observed. Such dynamics may be one of the mechanisms through which high-dimensional chaos is generated in neural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.